
Solutocapillary convection in the float-zone process with
a strong magnetic field

J.S. Walker a,*, P. Dold b, A. Cr€ooll c, M.P. Volz d, F.R. Szofran d

a Department of Mechanical and Industrial Engineering, University of Illinois, 1206 West Green Street, Urbana, IL 61801, USA
b Kristallographisches Institut, University of Freiburg, Hebelstr. 25, D-79104 Freiburg, Germany

c Institut f€uur NE-Metallurgie und Reinststoffe, Technical University of Freiberg, Leipziger Str. 23, D-09599 Freiberg, Germany
d SD 47, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA

Received 15 February 2001; received in revised form 7 July 2001

Abstract

This paper treats the steady axisymmetric flow and mass transport in a cylindrical liquid bridge between the melting

end of a feed rod and the solidifying end of an alloyed semiconductor crystal. There is a strong, uniform, steady, axial

magnetic field. The surface tension depends on the temperature and the concentration of the species, while variations of

the concentration occur because one species is rejected into the liquid during solidification. The thermocapillary and

solutocapillary convections tend to cancel over part of the liquid bridge. For certain parameter ranges, there are two

different stable solutions: one where the concentration gradient along the free surface leads to dominance by the so-

lutocapillary convection and one where the mass transport due to the thermocapillary convection makes the concen-

tration gradient along the free surface small, so that the thermocapillary convection is dominant.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In the float-zone crystal-growth process, a liquid

bridge with a roughly cylindrical free surface is held by

surface tension between the melting bottom end of a

vertical, cylindrical feed rod and the solidifying top end

of a coaxial, vertical, cylindrical crystal. A heat flux into

the free surface keeps the liquid temperature above the

solidification temperature T �
s . The free-surface temper-

ature varies from a maximum of T �
s þ ðDT �Þ at a cir-

cumference roughly midway between the feed rod and

crystal to T �
s at the peripheries of the feed rod and

crystal. Since the surface tension of most molten semi-

conductors decreases as the temperature is increased,

surface-tension variations due to the temperature vari-

ations drive two toroidal, axisymmetric cells of ther-

mocapillary convection above and below the plane of

the hottest circumference. Both cells involve free-surface

flows toward a liquid–solid interface with axial return

flows in the interior of the liquid. In the float-zone

growth of alloyed crystals, the feed rod consists of a

mixture of two unassociated semiconductors, and here

we consider germanium with 10 at.% silicon, hereafter

called GeSi, as an example [1]. Both species enter the

liquid from the melting feed rod, and axial composi-

tional variations develop in the liquid because there is

rejection of one species during solidification at the

crystal–melt interface. For our GeSi example, Si is

preferentially absorbed into the crystal with the corre-

sponding rejection of Ge into the liquid. For a steady

state, the average composition of the crystal equals that

of the feed rod, but the Si concentration in the liquid

near the crystal–melt interface is much lower, and Si

diffuses from its highest concentration at the feed-rod–

melt interface to its lowest concentration at the crystal–

melt interface. Since the surface tension increases as the

Si concentration is increased, the surface-tension varia-

tion due to the compositional variation drives a single

toroidal, axisymmetric cell of solutocapillary convection

with a free-surface flow from the crystal toward the feed

rod and with axial return flow in the interior of the
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liquid. Above the hottest free-surface circumference, the

thermocapillary and solutocapillary convections rein-

force each other, but below this circumference, they tend

to cancel each other. Since the density of the liquid

mixture depends on temperature and composition, our

model also includes the buoyant and solutal convec-

tions.

Recently 8 mm diameter GeSi crystals were grown by

the float-zone process with an initially pure germanium

melt and with a linear increase in the silicon concen-

tration in the feed rod to 10 at.%. Patterns of the silicon

distribution in the crystal indicated that the direction of

the radial velocity near the crystal–melt interface was

reversed when the silicon concentration exceeded a cer-

tain level, thus reflecting the emerging dominance of the

solutocapillary convection over the local thermocapil-

lary convection [1]. These crystals were grown without a

magnetic field, but doped silicon crystals have been

grown by the float-zone process with strong axial mag-

netic fields [2]. We do not know of any alloyed crystals

which have been grown by the float-zone process with a

strong axial magnetic field, so that our numerical pre-

dictions cannot be compared to any experimental mea-

surements.

The objectives of this paper are to show: (1) that the

competition between the solutocapillary and thermo-

capillary convections can lead to two different stable,

steady, axisymmetric flows for certain parameter ranges,

and (2) that the history of the process determines which

of the two flows actually occurs. This paper uses a

simplified model with a cylindrical free surface and with

planar, isothermal liquid–solid interfaces, while the ac-

tual free surface sags due to the hydrostatic pressure,

and the shapes of the actual liquid–solid interfaces de-

pend on the global heat transfer and on the radial

concentration variation. Our simplified model ignores

some important phenomena, such as the periodic growth

rate arising from the competition between the soluto-

capillary and thermocapillary convections [3]. The du-

ality of flows for the same conditions will be altered by

coupling with other phenomena in an actual crystal-

growth process, but this duality will still occur for the

reasons given here.

2. Problem formulation

The cylindrical free surface has a radius R, and the

two planar liquid–solid interfaces are separated by 2bR.

We use cylindrical coordinates r, h, z, with r and z

normalized by R, with the z axis along the vertical

centerline and with the origin at the center of the liquid.

The dimensionless geometry is sketched in Fig. 1. In

addition to the steady, uniform, axial magnetic field

produced by a solenoid around the float-zone furnace,

there is an induced magnetic field produced by the

electric currents in the liquid. The characteristic ratio of

the induced to applied magnetic fields is the magnetic

Reynolds number Rm ¼ lprUR, where lp and r are the
magnetic permeability and electrical conductivity of the

liquid, while U is a characteristic velocity. For U, we

use the characteristic velocity for magnetically damped

thermocapillary convection [4,5],

U ¼ ð�oc=oT �ÞðDT �Þ
BRðrlÞ1=2

; ð1Þ

Nomenclature

b length to diameter ratio of liquid bridge

B magnetic flux density

C�, C�
0 , C dimensional, characteristic and dimen-

sionless concentrations

D diffusion coefficient

g 9.81 m/s2

Ha Hartmann number

N interaction parameter

p dimensionless pressure

Peg, Pem, Pet crystal-growth, mass transport and
thermal Peclet numbers

Pr Prandtl number

r, h, z cylindrical coordinates with unit vectors r̂r, ĥh,
ẑz

R radius of liquid bridge

Rm magnetic Reynolds number

t dimensionless time

T �
s , T solidification and dimensionless tempera-

tures

U ;Ug characteristic and crystal-growth velocities

v dimensionless velocity

a ¼ Ha3=2N�1 inertial parameter

bT, bC thermal and solutal volumetric expansion

coefficients

c surface tension

(DT �) temperature difference along free surface

j thermal diffusivity

k1, k2, k3 dimensionless parameters
l, lp dynamic viscosity and magnetic permeabil-

ity

q density

r electrical conductivity

w Stokes stream function

x Ug=U
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where c and l are the surface tension and dynamic vis-
cosity of the liquid, while T � is the dimensional liquid

temperature and B is the magnetic flux density of the

applied magnetic field. We assume that surface tension

and density are both linear functions of T � and of the

concentration of silicon, C�. For all crystal growth

processes with steady magnetic fields, Rm is very small,
so that it is appropriate to neglect the induced magnetic

field.

In the conservation equation for internal energy, the

characteristic ratio of the convective to conductive heat

transfer is the thermal Peclet number Pet ¼ UR=j, where
j is the liquid’s thermal diffusivity. Since U is propor-
tional to B�1, we assume that B is sufficiently large that

convective heat transfer is negligible. We assume that the

heat flux into the free surface at r ¼ 1 varies sinusoidally
from a maximum at z ¼ 0 to 0 at z ¼ �b. Then

T ¼ I0ðpr=2bÞ
I0ðp=2bÞ

cos
pz
2b

� �
; ð2Þ

where T ¼ ðT � � T �
s Þ=ðDT �Þ and I0 is the modified Bessel

function of the first kind and zeroth order.

In the Navier–Stokes equation, the characteristic

ratio of the electromagnetic (EM) body-force term to the

inertial terms is the interaction parameter N ¼ rB2R=
qU , where q is the density of molten germanium at T �

s .

Since N is proportional to B3, we assume that B is suf-
ficiently large that the inertial terms in the Navier–

Stokes equation can be neglected. In order to estimate

the error due to the neglect of inertial effects and con-

vective heat transfer, we solved the complete Navier–

Stokes and internal-energy equations for the half-zone

problem with an axial magnetic field. The half-zone

problem (1) has the same geometry as that presented in

Fig. 1, (2) has no heat flux across the free surface at

r ¼ 1, (3) has a temperature difference of 2ðDT �Þ be-
tween the two planar, isothermal liquid–solid interfaces

at z ¼ �b, and (4) includes thermocapillary convection,
but does not include solutocapillary, buoyant or solutal

convection. The half-zone problem is a benchmark for

the experimental and numerical study of thermocapil-

lary convection in the float-zone process [6–14], so that

there are many numerical solutions to validate our so-

lution of the complete equations without a magnetic

field. In addition, Prange et al. [15] recently presented

numerical solutions for the half-zone problem with a

uniform axial magnetic field and provided thorough

documentation of their numerical accuracy. They pre-

sented steady, axisymmetric solutions for a fixed value

of ðDT �Þ and for 06Ha6 100, where Ha ¼ BRðr=lÞ1=2 is
the Hartmann number. Our solution of the complete

equations matches the results presented by Prange et al.

[15].

We solved the complete equations for four values of

Ha (100, 200, 400 and 800), for a wide range of values of

N, for b ¼ 1 and for a Prandtl number Pr ¼ l=qj ¼
0:02. Since Pet ¼ PrHa2N�1, both inertial effects and

convective heat transfer become progressively more

important as N is decreased. For each value of Ha, we

began with the solution for N ¼ 1, and we used a
continuation method suggested by Dr. Daniel Henry of

L’Ecole Centrale de Lyon to obtain steady solutions for

progressively smaller values of N. Morthland and

Walker [5] showed that a ¼ Ha3=2N�1 is the correct pa-

rameter to represent inertial effects for a thermocapillary

convection with a strong magnetic field which is parallel

or nearly parallel to the free surface. The correct pa-

rameter is a rather than N because the dimensionless

axial velocity inside a free-surface boundary layer is

O Ha1=2
� �

for large values of Ha. The ratio of the max-

imum velocity for a finite value of N to that for N ¼ 1
is plotted versus a for Ha ¼ 100 and 200 in Fig. 2. The
maximum velocity is always the axial velocity at some

point along the free surface, while this maximum occurs

at z ¼ 0 for N ¼ 1 and moves toward the colder liquid–

solid interface as N is decreased. We have also plotted

ratios of maximum stream function, velocity at several

points and temperature gradient at several points, and

these other ratios are all closer to one for each value of a
than those presented in Fig. 2. The curves for Ha ¼ 400
and 800 are not presented in Fig. 2 because they are very

close to the curve for Ha ¼ 200. The results in Fig. 2

Fig. 1. Dimensionless geometry with a sinusoidal heat flux into

the free surface, with a uniform axial magnetic field Bẑz, and
with a downward motion of the feed rod and crystal at the

crystal-growth velocity Ug.
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reveal the maximum errors associated with the neglect of

inertial effects and of convective heat transfer for

Pr6 0:02. The maximum errors are less than 1% and 3%
for a6 2 and a6 4, respectively. In order to compute
values of a and of other dimensionless parameters, we
used the following properties: r ¼ 1:5 MS/m, q ¼ 5510
kg/m3, l ¼ 0:744 mPa s, j ¼ 0:175 cm2/s, oc=oT � ¼
�0:076 mN/mK, oc=oC� ¼ 1:7 mN/mat.%Si, bT ¼
5	 10�4 K�1, bC ¼ 5:43	 10�3 (at.%Si)�1, R ¼ 4 mm
and ðDT �Þ ¼ 6 K, where bT and bC are the thermal and
solutal volumetric expansion coefficients. With these

values, a ¼ 2 and 4 correspond to B ¼ 2:4 and 1.5 T,
respectively.

For an axisymmetric flow, the radial velocity and the

axial magnetic field produce an azimuthal electric cur-

rent which interacts with the magnetic field to produce

an EM body force opposing the radial velocity. The

dimensionless, inertialess Navier–Stokes equation is

0 ¼ �rp þ Ha�1ðk1T þ k2CÞẑz� vr r̂rþ Ha�2r2v; ð3Þ

where p is the deviation of the pressure from the uni-

form-density hydrostatic pressure normalized by rUB2R,
C ¼ C�=C�

0 is the silicon concentration normalized by

the uniform concentration C�
0 in the feed rod, v ¼

vr r̂rþ vzẑz is the velocity normalized by U, and r̂r; ĥh; ẑz are
unit vectors for the cylindrical coordinates. The dimen-

sionless parameters are

k1 ¼
qgbTR

2

ð�oc=oT �Þ ; k2 ¼
qgbCC

�
0R
2

ð�oc=oT �ÞðDT �Þ ; ð4a; bÞ

We introduce the Stokes stream function wðr; zÞ in order
to satisfy the continuity equation, where

vr ¼
1

r
ow
oz

; vz ¼ � 1
r
ow
or

: ð5a; bÞ

Section 3 presents solutions for Ha ¼ 100, 200 and
400. In the asymptotic solution for Ha � 1, the liquid

bridge is divided into: (a) an inviscid core region, (b)

Hartmann layers with OðHa�1Þ thickness between the
core and the liquid–solid interfaces at z ¼ �b, (c) a
parallel layer with OðHa�1=2Þ thickness adjacent to the
free surface at r ¼ 1, and (d) intersection regions with
Dr ¼ OðHa�1=2Þ and Dz ¼ OðHa�1Þ between the parallel
layer and the liquid–solid interfaces at z ¼ �b. For
Ha ¼ 100, the Hartmann layers and intersection regions
are very thin and have a simple, local, exponential

structure [16], but the parallel layer occupies approxi-

mately 0:4 < r < 1:0, so it is definitely not thin. There-
fore the formal asymptotic solution for Ha � 1, which

assumes that the parallel layer is vanishingly thin, is not

appropriate for the Hartmann number range considered

here. However there is no need to numerically reproduce

the simple exponential structure of the Hartmann layers

and intersection regions, since their large-Ha analytical

solutions are certainly valid for Ha ¼ 100. Therefore we
use a composite core-parallel-layer solution [17] where

we neglect terms in Eq. (3) which are negligible in both

the core and parallel layer, and we apply Hartmann

conditions at z ¼ �b. The terms in Eq. (3) which are
negligible are all the viscous terms in the r component of

Eq. (3) and the term Ha�2o2vz=oz2 in the z component.
The Hartmann layers and intersection regions match

any radial velocity in the composite core-parallel-layer

solution, provided vz in this solution satisfies the Hart-
mann conditions [16]. Neglecting OðHa�1Þ terms, these
conditions are that vz ¼ 0 at z ¼ �b, so that the error in
our composite solution is OðHa�1Þ.
The equation governing the stream function for the

composite solution is

o4w
or4

� 2
r
o3w
or3

þ 3
r2

o2w
or2

� 3
r3

ow
or

� Ha2
o2w
oz2

¼ Hak1r
oT
or

þ Hak2r
oC
or

: ð6Þ

The boundary conditions at z ¼ �b are w ¼ 0, and those
at r ¼ 1 are

o2w
or2

� ow
or

¼ Ha
oT
oz

� Hak3
oC
oz

; w ¼ 0; ð7a; bÞ

where the dimensionless parameter

k3 ¼
ðoc=oC�ÞC�

0

ð�oc=oT �ÞðDT �Þ : ð8Þ

The change in the dimensionless concentration along

the free surface is ðDCÞfs ¼ Cð1; bÞ � Cð1;�bÞ, so that
k3ðDCÞfs is a characteristic ratio of the solutocapillary to
thermocapillary convections. The appropriate condition

at the centerline is that the Taylor series for w has only
even powers of r, starting with r2.
The equation governing the dimensionless concen-

tration of silicon in the liquid is

Fig. 2. For the half-zone problem with an axial magnetic field,

the ratio of the maximum velocity to that for a ¼ 0 versus a for
Ha ¼ 100 and 200.
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1

r
ow
oz

oC
or

� x

�
þ 1

r
ow
or

�
oC
oz

¼ Pe�1m
o2C
or2

�
þ 1

r
oC
or

þ o2C
oz

�
; ð9Þ

where the dimensionless parameters are x ¼ Ug=U and

the mass transport Peclet number Pem ¼ UR=D, while Ug
is the crystal-growth velocity, i.e., the rate at which the

feed rod melts and the crystal grows, and D is the dif-

fusion coefficient for silicon in molten germanium. The

boundary conditions are

oC
or

¼ 0; at r ¼ 1; ð10aÞ

C þ Pe�1g
oC
oz

¼ 1; at z ¼ b; ð10bÞ

oC
oz

þ Pegð1� ksÞC ¼ 0; at z ¼ �b; ð10cÞ

where Peg ¼ UgR=D ¼ xPem is the crystal-growth Peclet
number, and ks is the segregation coefficient which is the
ratio of the silicon concentration in the crystal at a point

on the crystal–melt interface to that in the melt at the

same point. The Taylor series for C consists of even

powers of r.

We used a Chebyshev spectral collocation method

and a Newton–Raphson iterative method to solve for

w and C. For each case, we increased the number of ra-
dial and axial Gauss–Lobatto collocation points until

the results did not change.

3. Results

We present a parametric study with variations of Ha

and Pem, and with fixed values of the other parameters.
The values of the other parameters are: b ¼ 1, k1 ¼ 5:69,
k2 ¼ 103, k3 ¼ 37:3, Peg ¼ 0:0926, and ks ¼ 4:2, which
correspond to the properties listed in Section 2, plus

C�
0 ¼ 10 at.%Si and Ug ¼ 0:5 mm/h.
For Pem ¼ Ha ¼ 100, there are two stable, steady,

axisymmetric solutions. We used a time integration to

obtain the first solution. We added oC=ot to the left side
of Eq. (9), where t is time normalized by R=U . We began
with C ¼ 0 at t ¼ 0. For an initial period, we replaced
the one on the right side of Eq. (10b) with a linear

function of t from zero to one. For this time integration,

the thermocapillary and buoyant convections always

exist, and the solutocapillary and solutal convections are

added as silicon enters the liquid from the melting feed

rod. This time integration approaches a steady-state

solution which we call the TC solution because the

thermocapillary convection remains dominant over the

lower part of the free surface where it competes with

the solutocapillary convection.

The streamlines and contours of constant C for the

TC solution for Pem ¼ Ha ¼ 100 are presented in Fig. 3.
Relative to the flow with only the thermocapillary and

buoyant convections, the addition of the solutocapillary

and solutal convections has increased the strength of the

upper circulation by 11.9%, has decreased the strength

of the lower circulation by 37.4% and has moved the

free-surface stagnation point from z ¼ 0 to �0.4. The
only significant values of oC=oz at r ¼ 1 are located near
the free-surface stagnation point, while the free-surface

convective mass transport in the two capillary circula-

tions essentially eliminates the free-surface concentra-

tion gradient for z > 0:0 and z < �0:6.

Fig. 3. TC solution for Ha ¼ Pem ¼ 100. (a) Streamlines: w ¼
0:03k, for k ¼ �2 to 5. (b) Constant concentration contours:
C ¼ 0:235þ 0:005k, for k ¼ 0 to 11.
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We used continuation through a series of steady-state

solutions for Ha ¼ 100 and for Pem increasing from 1 to
100 to obtain the second stable, steady, axisymmetric

solution. For Pem ¼ 1, the contours of constant C are
nearly horizontal and are very close to those with only

diffusion and a uniform downward velocity of Ug, so
that there is the largest possible free-surface concentra-

tion gradient for this growth rate. The solutocapillary

convection overwhelms the thermocapillary convection,

and there is a single circulation with flow along the en-

tire free surface from the crystal toward the feed rod. As

Pem is increased from 1 to 100, convective mass trans-
port reduces the free-surface concentration gradient, so

that the maximum value of w decreases by 70.5%, but vz
remains positive over the entire free surface. We call the

solution obtain by this continuation the SC solution

because the solutocapillary convection remains domi-

nant over the lower part of the free surface where it

competes with the thermocapillary convection.

The streamlines and contours of constant C for the

SC solution for Pem ¼ Ha ¼ 100 are presented in Fig. 4.
The contours of constant C in Figs. 3b and 4b are

similar except in the region 0:7 < r < 1:0 and �1:0 < z
< �0:5. For Fig. 3b, the thermocapillary convection
existed before the solutocapillary convection was added

with a constant value of Pem, so that the convective mass
transport for z < �0:5 prevented the development of a
local free-surface concentration gradient and thus pre-

vented the solutocapillary convection from overwhelm-

ing the thermocapillary convection. For Fig. 4b, the

thermocapillary and solutocapillary convections always

coexisted, starting with negligible convective mass trans-

port for Pem ¼ 1 with its large free-surface concentration
gradient and with the associated dominance by the so-

lutocapillary convection. As Pem was increased, the es-
tablished free-surface concentration gradient kept a

balance between the thermocapillary and solutocapillary

convections, so that there continued to be little con-

vective mass transport for z < �0:5, leading to a larger
local free-surface concentration gradient.

We used the same continuation method to study

changes in both the SC and TC solutions as Pem is varied
for Ha ¼ 100. We have already discussed the SC solu-
tion for Pem6 100. When Pem is increased from 100 for
the SC solution, a small region of clockwise circulation

with w < 0 appears near r ¼ 1 and z ¼ �0:5 at Pem ¼
120, reflecting the first point where the thermocapillary

convection overtakes the solutocapillary convection.

The free-surface temperature gradient is largest at z ¼
�1, but the free-surface concentration gradient is also
large here, so that solutocapillary convection continues

to dominate near the crystal–melt interface. At z ¼ �0:5,
the temperature gradient is smaller, but the concen-

tration gradient is much smaller due to the convective

mass transport associated with the single circulation,

so that this is the location where the clockwise ther-

mocapillary convection first emerges. As Pem is increased
from 120, the strength of the clockwise circulation

increases, this circulation remains in the region 0:9 <
r < 1:0 and �0:65 < z < �0:3, with the stronger coun-
terclockwise circulation going around it. The steady SC

solution does not exist for Pem > 181. If we use the
steady SC solution for Pem ¼ 181 as the initial condition
for a time integration with Pem ¼ 182, the small clock-
wise circulation near z ¼ �0:5 grows in strength and
extends toward z ¼ �1. The associated downward con-
vective mass transport decreases the free-surface con-

centration gradient for z < �0:4, thus reducing the local
solutocapillary convection and allowing the emerging

dominance of the thermocapillary convection. This time

Fig. 4. SC solution for Ha ¼ Pem ¼ 100. (a) Streamlines:
w ¼ 0:03k, for k ¼ 0 to 5 and w ¼ �0:0004. (b) Constant con-
centration contours: C ¼ 0:235þ 0:005k, for k ¼ 0 to 11.
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integration approaches the steady TC solution for

Pem ¼ 182.
For the steady TC solution, as Pem is decreased from

100 to 80 for Ha ¼ 100, the strength of the clockwise
circulation near the crystal–melt interface decreases. The

steady TC solution does not exist for Pem < 80. If the
steady TC solution for Pem ¼ 80 is used as the initial
condition for a time integration with Pem ¼ 79, the
clockwise circulation for �1:0 < z < �0:4 decreases in
strength and in axial extent. The associated reduction in

convective mass transport permits a free-surface con-

centration gradient to develop for z < �0:4, so that the
growing solutocapillary convection eventually elimi-

nates the local clockwise circulation, and the solution

approaches the steady SC solution for Pem ¼ 79.
In summary for Ha ¼ 100, the only steady solution

for Pem < 80 is the SC solution, and the only steady
solution for Pem > 181 is the TC solution. For 806

Pem6 181, both the SC and TC solutions are possible.
For the parameter range where both may occur, which

of the two solutions actually occurs in a particular

crystal-growth process depends on the history of the

process, as illustrated by the ways we found the two

solutions. For processes with a constant magnetic field

strength, the thermocapillary convection is established

first when the feed rod is melted, and the solutocapillary

convection is added later as crystal growth begins and

rejection of one species creates an axial concentration

gradient. Such a constant field strength process would

always lead to the TC solution in the overlap range

because the initial thermocapillary convection would

prevent the development of the free-surface concentra-

tion gradient near the crystal–melt interface. On the

other hand, the steady SC solution in the overlap range

could be obtained by first increasing the magnetic field

strength after the start of crystal growth in order to

suppress convective mass transport enough to permit

development of a free-surface concentration gradient

and the associated dominance of the solutocapillary

convection. Then the field strength could be reduced and

the SC solution would persist throughout the overlap

range.

For Ha ¼ 200, both TC and SC solutions exist for
90:56 Pem6 220, and for Ha ¼ 400, both solutions exist
for 1236 Pem6 300. The basic characteristics of the two
solutions do not change significantly as Ha is increased

from 100 to 800, except that the circulations are confined

to a layer adjacent to the free surface whose radial extent

decreases as Ha�1=2, as expected [5].

4. Concluding remarks

This paper demonstrates that, for each value of the

Hartmann number, there is a range of values of the mass

transport Peclet number for which two stable, steady,

axisymmetric flows are possible. For the parameter

range with two possible steady solutions, the history of

the process determines which of the two solutions ac-

tually occurs. If the solutocapillary convection is added

to an existing thermocapillary convection, then the

convective mass transport associated with the thermo-

capillary convection prevents the development of the

free-surface concentration gradient needed to drive a

solutocapillary convection that can overwhelm the

thermocapillary convection. Thus the thermocapillary

convection remains dominant. On the other hand, if the

convective mass transport is suppressed after both the

thermocapillary and solutocapillary convections exist,

for example, by briefly increasing the magnetic field

strength, then the free-surface concentration gradient is

established. When strong convective mass transport re-

sumes, the established free-surface concentration gradi-

ent drives a solutocapillary convection which cancels the

local thermocapillary convection, so that there is little

local convective mass transport and the solutocapillary

convection remains dominant.

We have not investigated the possibility of two dif-

ferent steady, axisymmetric flows in the float-zone pro-

cess without a magnetic field because the flow is unsteady

and nonaxisymmetric in every actual float-zone crystal-

growth process without a magnetic field. Even for the

float-zone growth of 8 mm diameter silicon crystals in a

uniform axial magnetic field with B ¼ 0:5 T, the flow
remains unsteady and nonaxisymmetric [18,19]. There-

fore we have only considered strong magnetic fields, such

as those used by Cr€ooll et al. [2] for growth of doped sil-
icon crystals.
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